Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Issue of air dose rate measurement using survey-meters

Tsuda, Shuichi; Saito, Kimiaki

"Fukushima No Fukko Ni Mukete No Hoshasen Ni Kansuru Korekara No Kadai" Shimpojiumu Hokokusho, p.30 - 33, 2015/00

Dose rate monitoring in air in the environment has been performed since the Fukushima Dai-ichi Nuclear Power Plant accident happened. The reliability of detectors such as survey-meters is ensured under a controlled set of standard conditions in a radiation calibration field. However, the calibration is performed only in a uniform irradiation condition in general, but in reality, the incident direction of the photons is random in the environment. Since detector responses are dependent on incident direction, except for spherical detectors, it is necessary to evaluate the reliability of the measured dose. In this study, using the PHITS code, dose rates in air of a common NaI(Tl) scintillation survey-meter and CsI(Tl) detectors used in the KURAMA system are calculated in a semi-infinite radiation field. In the presentation, the dependence of the dose rates on the incident direction of photons will be shown.

Journal Articles

Fields of view for environmental radioactivity

Malins, A.; Okumura, Masahiko; Machida, Masahiko; Takemiya, Hiroshi; Saito, Kimiaki

Proceedings of International Symposium on Radiological Issues for Fukushima's Revitalized Future, p.28 - 34, 2015/00

The $$gamma$$ component of air radiation dose rates is a function of the amount and spread of radioactive nuclides in the environment. These radionuclides can be natural or anthropogenic in origin. The field of view describes the area of radionuclides on, or below, ground that is responsible for determining the air dose rate, and hence correspondingly the external radiation exposure. This work describes Monte Carlo radiation transport calculations for the field of view under a variety of situations. Presented first are results for natural 40K and thorium and uranium series radionuclides distributed homogeneously within the ground. Results are then described for atmospheric radioactive cesium fallout, such from the Fukushima Daiichi Nuclear Power Plant accident. Various stages of fallout evolution are considered through the depth distribution of $$^{134}$$Cs and $$^{137}$$Cs in soil. The fields of view for the natural radionuclides and radiocesium are different. This can affect the responses of radiation monitors to these nuclides if the detector is partially shielded from the ground within its field of view. The field of view also sets the maximum reduction in air dose rates that can be achieved through local decontamination or remediation measures. This maximum efficiency can be determined quickly from the data presented here for the air dose rate versus the spatial extent of radioactive source on the ground.

Journal Articles

Prediction of ambient dose equivalent rates for the next 30 years after the accident

Kinase, Sakae; Takahashi, Tomoyuki*; Sato, Satoshi*; Yamamoto, Hideaki; Saito, Kimiaki

Proceedings of International Symposium on Radiological Issues for Fukushima's Revitalized Future, p.40 - 43, 2015/00

To support recovery and rehabilitation in Fukushima, prediction models have been developed for ambient dose equivalent rate distribution within the 80 km-radius around the Fukushima Daiichi Nuclear Power Plant. The prediction models that are based on bi-exponential functions characterized by ecological half-lives of radioactive caesium for land-use, enable Fukushima residents to obtain distribution maps of ambient dose equivalent rates for the next 30 years after the accident. Model parameters were evaluated using ambient dose equivalent rates through car-borne surveys. The model parameters in deciduous and evergreen forest areas were found to be different from those in other areas. In addition, it was found that distribution maps of ambient dose equivalent rates for the next 30 years after the accident, created by the prediction models would be useful for follow-up of the radiological situation.

Oral presentation

Hydrodynamic simulation of radionuclides dispersion inside the harbor in Fukushima Daiichi Nuclear Power Plant

Yamada, Susumu; Machida, Masahiko; Watanabe, Masahisa

no journal, , 

no abstracts in English

Oral presentation

In-situ environmental radioactivity measurement in high dose rate areas using a CdZnTe semiconductor detector

Kowatari, Munehiko; Kubota, Takumi*; Shibahara, Yuji*; Fujii, Toshiyuki*; Takamiya, Koichi*; Mizuno, Satoshi*; Yamana, Hajimu*

no journal, , 

For the purpose of determining a surface deposition density on soil for radio-cesiums, a CdZnTe (CZT) semiconductor detector whose crystal has dimensions of 1 cm cubic was applied to the in situ environmental radio-activity measurement in deeply contaminated areas in Fukushima region. Even in high dose rate areas where pulse height spectra weren't able to be properly obtained by the conventional high purity Ge semiconductor detector, proper pulse height spectra were obtained by the CZT detector with certain accuracy. Results of deposition density on soil for $$^{134}$$Cs and $$^{137}$$Cs derived from net peak areas by the CZT detector seemed consistent, comparing with those measured by the Japanese government. Air kerma rates were estimated by the same pulse height spectra for determining surface deposition density on soil for radio-cesiums and found to be almost the same values as obtained by the NaI(Tl) scintillation survey-meter.

5 (Records 1-5 displayed on this page)
  • 1